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Abstract

Rafflesia is a genus of holoparasitic plants endemic to Southeast Asia that has lost the ability to undertake photosynthesis.
With short-read sequencing technology, we assembled a draft sequence of the mitochondrial genome of Rafflesia lagascae
Blanco, a species endemic to the Philippine island of Luzon, with ~350x sequencing depth coverage. Using multiple
approaches, however, we were only able to identify small fragments of plastid sequences at low coverage depth (<2x)
and could not recover any substantial portion of a chloroplast genome. The gene fragments we identified included
photosynthesis and energy production genes (atp, ndh, pet, psa, psb, rbcl), ribosomal RNA genes (rrn16, rrn23), ribosomal
protein genes (rps7, rps11, rps16), transfer RNA genes, as well as matK, accD, ycf2, and multiple nongenic regions from the
inverted repeats. None of the identified plastid gene sequences had intact reading frames. Phylogenetic analysis suggests
that ~33% of these remnant plastid genes may have been horizontally transferred from the host plant genus Tetrastigma
with the rest having ambiguous phylogenetic positions (<50% bootstrap support), except for psaB that was strongly
allied with the plastid homolog in Nicotiana. Our inability to identify substantial plastid genome sequences from R.
lagascae using multiple approaches—despite success in identifying and developing a draft assembly of the much larger
mitochondrial genome—suggests that the parasitic plant genus Rafflesia may be the first plant group for which there is

no recognizable plastid genome, or if present is found in cryptic form at very low levels.
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Introduction

The ability to conduct photosynthesis is one of the defining
features of plants. They owe this capacity to endosymbiotic
chloroplasts, once free-living cyanobacteria that were assim-
ilated by an ancestral protist ~1.5 billion years ago (Gould
et al. 2008). Chloroplasts, one of several plastids that develop
from meristematic proplastids, are the site of production and
storage of key plant metabolites (Wise 2006). Plastid organ-
elles—which include chromoplasts and amyloplasts—are also
involved in fatty acid synthesis, production of tetrapyrroles
and aromatic substances, and pigment and starch storage
(Neuhaus and Emes 2000).

Chloroplasts possess circular DNA genomes, which
range size from ~107 to 217kb (mean of ~152kb) in the
220 photosynthetic angiosperms that have been examined
to date (http://www.ncbi.nlm.nih.gov/genome, last accessed

February 8, 2014). Chloroplast genomes (or plastomes) typi-
cally encode ~85 proteins and ~45 transfer RNA (tRNA) and
ribosomal RNA (rRNA). The genome is a relic of the endo-
symbiotic origin of this organelle and is reduced in size from
its bacterial ancestor, having lost some genes as well as trans-
ferring others to the nucleus (Martin 2003). As a consequence
of this evolutionary relocation of genes, most proteins re-
quired for chloroplast function (~2,500-3,500) are encoded
by nuclear loci (Blanchard and Schmidt 1995).

Chloroplast genome structure is highly conserved across
flowering plants, with the interesting exception of parasitic
plants. Plant parasitism is an interesting evolutionary adapta-
tion, arising independently at least 12-13 times in flowering
plants, with about 1% of all known angiosperm species being
parasitic plants (Barkman et al. 2007; Westwood et al. 2010).
Hemiparasites, which depend on their hosts only for water
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and inorganic nutrients, still retain much of their chloroplast
genomes (Braukmann and Stefanovic 2012). Achlorophyllous
holoparasites, however, have undergone evolutionary reduc-
tion in genome size associated with gene loss. Epifagus virgini-
ana, for example, has a much smaller plastid genome (~70 kb)
and is about half of the expected plastome size in autotrophic
land plants (Wolfe et al. 1992). This reduced chloroplast (or
plastid) genome contains only 42 genes and has lost the loci
for photosynthesis and chlororespiration (Wolfe et al. 1992).
Despite these reductions in genome size, all plants examined
to date, including the nonphotosynthetic parasitic plants, as
well as apicomplexan parasites such as Plasmodium, continue
to retain even a vestige of a plastid genome (McFadden et al.
1996; Maréchal and Cesbron-Delauw 2001; Krause 2008; Li
et al. 2013).

The genus Rafflesia, which belongs to the family
Rafflesiaceae (order Malpighiales), is one of the eight known
genera of plant holoparasites. Rafflesia is unique to the tropics
of Southeast Asia, with some species in the genus producing
the largest single flowers in the world, growing up to a meter
in diameter. It has no stems, roots, or leaves, with only its
massive flower protruding from the roots or stems of its sole
host plant, the tropical vine Tetrastigma (Vitaceae) (Nais
2001) (see fig. 1). Nearly one-third of the 30 known Rafflesia
species are endemic to the Philippines (Nickrent et al. 1997;
Barcelona et al. 2009). Other members of the Rafflesiaceae
family include Sapria and Rhizanthes, which are also holopar-
asites of Tetrastigma (Nais 2001).

Attempts to isolate highly conserved plastid genes from
members of the holoparasite genus Rafflesia (Rafflesiaceae)
(Nickrent et al. 1997; Davis et al. 2007) have failed, and an-
other study has indicated the possibility of plastid genome
loss in Rafflesia leonardi (Nickrent DL, Molina ), Geisler M,
Bamber AR, Pelser PB, Barcelona JF, Inovejas SAB, Uy |,
Purugganan MD, unpublished data). Here we provide a

Fic. 1. Open flower of R. lagascae Blanco. The flower is 15-20cm in
diameter.
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strong evidence that suggests that the chloroplast/plastid
genome is entirely absent in R. lagascae Blanco (see fig. 1), a
species found only on the Philippine island of Luzon but
nevertheless the most widespread of all the Philippine
Rafflesia species (Pelser et al. 2013). With data from lllumina
next-generation sequencing, we employ multiple separate
techniques for organellar genome assembly. We are able to
assemble a draft of the R. lagascae mitochondrial genome at
high coverage. We cannot, however, identify an intact plastid
genome in R. lagascae, which indicates that members of the
parasitic plant genus Rafflesia may be the first plant group
shown to have lost its plastid genome.

Results

Draft Sequence Assembly of a Mitochondrial Genome
in Rafflesia

A floral bud of R. lagascae was collected from Cagayan prov-
ince in the Philippines. Attached only at its base to its
Tetrastigma host, Rafflesia tissue was carefully dissected
from the host plant, and genomic DNA was extracted from
the disk distant from host tissue and enclosed in layers of
bracts. Both 100-bp and 3-kb insert libraries were made
from genomic DNA and sequenced using lllumina next-
generation technology.

Of the approximately 440 million lllumina paired-end (PE)
sequencing reads from R. lagascae from both insert libraries,
we used two distinct methods to assemble a draft sequence
of the mitochondrial genome. First, we used a bait mapping
approach by employing previously published data for R. can-
tleyi (Xi et al. 2013) to assemble the mitochondrion from this
species using SOAPdenovo (Luo et al. 2012), and used this
assembled R. cantleyi sequence as bait to identify mitochon-
drial genome sequences from the R. lagascae lllumina reads.
These identified reads were then assembled by SOAPdenovo
to provide a draft genome assembly of the R. lagascae mito-
chondrial genome. We were able to identify and assemble
~3203kb of the R. lagascae mitochondrial genome
(N50 = 4.45 kb); this constitutes a draft assembly with 213
gaps (see fig. 2). The mean sequencing depth coverage
across the reference is 349.7x, with a standard deviation of
173.02x (see supplementary fig. S1, Supplementary Material
online, for sequence depth coverage across the draft-assem-
bled genome).

Additionally, we used a de novo assembly approach (with-
out any reference genome) to obtain ~1,447,235 sequence
contigs of the R. lagascae sequence data using CLC Genomics
Workbench (CLC Bio, Aarhus, Denmark), with an N50=
182 bp. The low N50 for the entire data set is due to either
the large size of the R. lagascae nuclear genome or its high
repeat content. Despite this, we were able to readily identify
~4,000 sequence contigs containing mitochondrial genome
sequence through Blast analysis of assembled sequence con-
tigs against 15 plant mitochondrial genomes. The largest 49
sequence contigs were shown to have about 210x sequence
coverage. These contigs ranged from 1.0 to 17.3 kb, with an
average size of 6.3 +5.0kb; this represents a total sequence
length of 382 kb.
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We identified 42 known plant protein-coding mitochon-
drial genes, as well as 60 unique open reading frames (ORFs)
(see fig. 2 and supplementary table S1, Supplementary
Material online). Phylogenetic analyses of the mitochondrial
protein-coding genes show that 7 of 24 genes with clear phy-
logenetic placement (29%) have these Rafflesia loci allied to
Vitis vinifera (Vitaceae) or other plant groups, instead of the
more closely related Ricinus communis (Euphorbiaceae,
Malpighiales) (results not shown). The other identified mito-
chondrial genes show equivocal placement in the phyloge-
nies. These confirm previous findings of rampant horizontal
gene transfer (HGT) in this genus (Xi et al. 2012, 2013;
Nickrent DL, Molina J, Geisler M, Bamber AR, Pelser PB,
Barcelona JF, Inovejas SAB, Uy |, Purugganan MD, unpublished
data).
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Searching for a Plastid Genome

We attempted to recover plastid sequences from R. lagascae
using several approaches. First, we mapped the sequence
contigs obtained from the CLC Genomics Workbench as-
sembly method onto the chloroplast genomes of Ricinus
and Vitis, using the program Geneious R6 (Biomatters,
Auckland, New Zealand). This yielded 17 sequence contigs
(G1-G17; table 1) that mapped to the plastid genomes of
these two species, with a total length of ~3.9kb. We also
conducted a BlastN search of all conserved plastid genes
available from GenBank against the assembled CLC sequence
contigs, which identified additional 26 contigs with signifi-
cant (e-value < 1e~'"°) hits (table 1). In addition, we gener-
ated profile hidden Markov models (HMMs; Henderson et al.
1997) from alignments of conserved plastid genes. This
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Fic. 2. Draft structure of R. lagascae mitochondrial genome. The gene positions indicated are based on the assumption of synteny with Ricinus
(GenBank accession number HQ874649; Rivarola et al. 2011). The coordinates and encoded products of the specific genes are shown in supplementary
table S1, Supplementary Material online. Although depicted as a complete circular genome, it should be stressed that this is a draft assembly with 213

gaps and that portions of the mitochondrial sequence remain unassembled.
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Table 1. Identified Plastid Sequences in Rafflesia lagascae Including
Noncoding Sequences in Inverted Repeat (IR) Regions.

Gene Name  Size (bp)  Method of Contig Phylogenetic
Recovery Number® Alliance®
accD 136 BlastN 763,474  Vitis mt, cp, nuc”
atpA 158 BlastN 1,105,137 —
atpB 127 BlastN 568,017 —
IR 138 BlastN 690,602 Hevea cp, Vitis cp
IR 160 BlastN 552,527 -
IR 163 Geneious G14 -
IR 190 Geneious G11 —
IR 199 Geneious G3  Vitis cp, nuc*
IR 207 BlastN 435,549 Vitis nuc”
IR 219 BlastN 1,355,988 —
IR 227 Geneious G15 Vitis nuc®
IR 274 BlastN 426,447  Vitis cp, nuc®
IR 299 Geneious G6 -
IR, trnA-UGC 104 Geneious G8 Vitis nuc
113 Geneious G7 Vitis nuc
168 Geneious G16 Vitis nuc
330 BlastN 859,744 Vitis nuc
484 Geneious G10  Vitis nuc®
IR, trnl-GAU 496 BlastN 12,131 —
IR, trnV-GAC 145 Geneious G13 Vitis nuc
178 Geneious G5 Vitis nuc
178 BlastN 1,147,528 Vitis nuc®
matK 227 BlastN 710,409 Vitis cp, mt, nuc*
ndhB 118 Geneious G4 —
ndh) 247 BlastN 1,167,865 Vitis cp, nuc®
247 Geneious G1 Vitis cp, nuc
petB 140 Geneious G2 —
petG 116 BlastN 823,312 —
psaB 211 BlastN 76,772 Nicotiana cp
315 BlastN 662,630 Nicotiana cp
324 BlastN 972,383  Nicotiana cp®
psbA 161 BlastN 1,131,304  Vitis mt®
psbD 280 BlastN 39,796 —
psbZ 137 BlastN 1,038,399 —
rbcl1 395 BlastN 127,053 -
rbcl2 647 BlastN 170,975  Vitis cp, mt*
rps11 113 HMM 322,006 Vitis nuc®
rps16 148 BlastN 641,235 —
rps7 119 HMM 864,624 —
rrn16 (IR) 191 Geneious G12 —
203 BlastN 1,114,615 —
317 BlastN 4,358 -
rrn23 (IR) 139 Geneious G17 Vitis cp
766 Geneious G9 Vitis cp
1026 BlastN 19,544 Vitis cp©
yf2 (IR) 203 HMM 113,164 —

Note.—Certain IR sequences may appear multiple times because they belong to the
inverted repeats region of the plastid genome, whereas genes like ndhj were iden-
tified by different methods.

Contig number is the specific contig out of the approximately 1.4 million contigs
from CLC, except for those prefixed with “G,” which were derived from Geneious.
®Taxa and genome/s (mt, mitochondria; cp, chloroplast; nuc, nuclear) to which
Rafflesia was shown strongly associated with (>50% BS, compare with fig. 4) in
phylogenetic analyses; sequences marked with “—” had ambiguous phylogenetic
positions. Multiple taxon/genome associations represent polytomous nodes >50%
BS in which Rafflesia is embedded in.

“Corresponding phylogenies for these sequence contigs that show Rafflesia in un-
equivocal positions are provided as Supplementary Material (taxa in the rps11 phy-
logeny represent the only significant hits recovered).

796

identified three more contigs with significant hits (e-
value < Te” %) (table 1). Together, these approaches identi-
fied a total of 46 putative plastid sequence contigs with an
average length of 242 bp and a total length of 11.5 kb.

To ensure that our failure to identify a plastid genome was
not due to a problem of the genome assembly method, we
identified 925 lllumina 100-bp PE reads (out of ~214 million
reads) that directly mapped to plastid sequences found in
GenBank. These sequences were then de novo assembled
using SOAPdenovo, another sequence assembly program
for short-read sequencing data (Luo et al. 2012). Aside from
those sequences already identified by the previous methods,
we found additional five sequence fragments, but they appear
embedded in the assembled mitochondrial genome of
R. lagascae.

Unlike the high sequence coverage for the draft assembly
of the mitochondrial genome (~350x% ), the mean sequence
coverage for the plastid sequence fragments we identified
was substantially lower at 1.48x +1.26x reads. The anom-
alously low sequencing read depth coverage contrasts
with the several hundred copies of plastid genomes that
should exist within plant cells (Bock 2007). As a comparison
with the normal expectation in different species, we used
lllumina whole genome re-sequencing data to demonstrate
that chloroplast/plastid genome sequencing depth cover-
age was nearly equal to or exceeded that of mitochondrial
genome in leaf tissue in Oryza, Phoenix, and Arabidopsis,
and light-grown single-cell culture in the algae Chlamy-
domonas (see fig. 3). The sequencing reads in these species
covered >98% of the bases in these organellar genome
sequences.

Because the plastid copy number is reduced in nonphoto-
synthetic tissues like roots (Isono et al. 1997), it is possible that
lower levels of plastid DNA in the nonphotosynthetic
Rafflesia may be the source of our inability to identify a plastid
genome in this species. As a further positive control, we there-
fore obtained ~62 and ~104 million 100-bp PE Illumina se-
quencing reads from root DNA in Oryza glaberrima and
Arabidopsis thaliana, respectively, and examined relative
levels of plastid and mitochondrial genome copies in these
nonphotosynthetic tissues. Based on sequencing depth cov-
erage from root genomic DNA (see fig. 3), the plastid genome
in O. glaberrima is ~66% that of mitochondrial genome levels,
whereas in A. thaliana the plastid genome is found at ~3.5-
fold greater levels than mitochondrial genome (down from an
~17-fold greater level in leaves). Our data demonstrate a re-
duction in plastid genome levels in the nonphotosynthetic
root compared with leaf tissues but nevertheless show that
plastid genome levels can be substantial in nonphotosyn-
thetic tissues.

Fragments of the Plastid Genome

Although we could not identify an intact plastid genome, we
did find small fragments of plastid genes that ranged in size
from 104 to 1,026 bp. We recovered short segments of 17
protein-coding genes (including ribosomal proteins), two
rRNA and three tRNA genes, as well as ten intergenic
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Fic. 3. Whole-genome sequencing coverage for mitochondrial and chloroplast genomes in different species. Blue bars are for chloroplast genomes,
whereas red bars are for mitochondrial genomes. The tissue source for the genomic DNA is indicated; for C. reinharditii, it is single-cell culture under

constant light.

sequences that are found in inverted repeat regions of the
chloroplast genome in other species (see table 1). No full gene
sequences were identified. None of the plastid sequence con-
tigs had intact reading frames when aligned with coding se-
quences of plastid genes from photosynthetic taxa (results
available upon request).

To determine whether any of the recovered plastid se-
quences were expressed, we also mapped the sequencing
reads from the R. cantleyi transcriptome library (accession
SRA052224) to these R. lagascae sequence fragments
(Xi et al. 2012). The greatest number of reads mapped were
23 singleton reads from the partial ribosomal rrn16 (~150 bp)
fragment. These results indicate that there is no significant
expression for any of these putative plastid-derived
sequences, at least in the actively developing floral bud
tissue of this parasitic plant.

Phylogenetic Analysis of Remnant Rafflesia Plastid
Gene Sequences

Phylogenetic analysis of the 46 plastid sequence fragments
that we identified show that 15 of these Rafflesia sequence
fragments are allied with Vitis with >50% BS (table 1, fig. 4
and supplementary data S2, Supplementary Material online),
The rest of the plastid sequences show Rafflesia in equivocal
positions (BS <50%).

Four sequence fragments, including ndh/ (fig. 4A), depict
Rafflesia plastid sequences associated with both Vitis’ nuclear
and plastid sequences. Five other sequences such as a
noncoding sequence from one of the inverted repeats were
more similar to a Vitis’ nuclear sequence than they are to
plastid sequences (fig. 4B; supplementary data S2, Supple-
mentary Material onling; table 1). Only Rafflesia’s
rrn23 was solely with a Vitis chloroplast sequence (fig. 4C).
A 136-bp fragment from the accD gene had Rafflesia grouping
with nuclear, plastid and mitochondrial copies (76% BS;
supplementary data S2, Supplementary Material online, and
table 1).

No plastid sequence was found to be phylogenetically as-
sociated with Ricinus or Hevea, the closest relatives to Rafflesia
with available organellar genome sequences. However, the

Rafflesia psaB gene fragment grouped with the Nicotiana ho-
molog with 80% BS (fig. 4D).

The anomalous phylogenetic placement of these remnant
Rafflesia plastid genes may arise from contamination from the
DNA of the host plant Tetrastigma. To test for contamination
of Tetrastigma in the R. lagascae DNA extract, we used bar-
coding primers to amplify the rbcL gene (Kress et al. 2009) in
these two species. We were unable to polymerase chain re-
action (PCR)-amplify rbcL from R. lagascae, although this gene
was easily amplified from the host Tetrastigma and from
other evolutionary divergent photosynthetic taxa from the
asterid and rosid families. Interestingly, we were able to re-
cover two nonoverlapping segments of rbcl sequence (rbclL1,
rbcl2) from the lllumina sequence contigs (~1 kb in size) from
R. lagascae (table 1), but these sequences are diverged in the
barcoding primer sequence regions (Kress et al. 2009) that are
normally conserved across multiple divergent autotrophic
angiosperm taxa. Like the other recovered plastid sequences,
Rafflesia’s rbcl contains premature stop codons.

Discussion

Possible Loss of the Plastid Genome in a Parasitic
Plant

The parasitic plant lifestyle affords an intimate connection
between a parasite and its host plant. As in many parasites,
this can lead to subsequent relaxation of selection pressure to
maintain key genes in the parasite as they become dependent
on host plants for crucial functions (Bromham et al. 2013;
Wicke et al. 2013). Moreover, the close connection to the host
can also lead to genetic transfer of information to the parasite
(Davis and Wurdack 2004; Xi et al. 2012, 2013).

The evolution of the chloroplast genome in parasitic
plants, particularly nonphotosynthetic holoparasites, can
lead to significantly reconfigured plastomes (Wicke et al.
2013). In these plants many photosystem and energy produc-
tion genes are lost from the plastome (Krause 2008; Li et al.
2013; Wicke et al. 2013). The 45.6-kb plastome of Conopholis
americana (Orobanchaceae) is the smallest published plastid
genome to date (Colwell 1994; Wicke et al. 2013). Though
devoid of genes expected to be present in autotrophic plants,
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Fic. 4. Phylogenies of recovered plastid sequences from R. lagascae. Rafflesia sequences group with (A) both nuclear (nuc) and plastid (cp) sequences in
Vitis; (B) only Vitis nuclear sequence; (C) only Vitis plastid sequences; (D) Nicotiana plastid sequence. Only bootstrap support >50% is indicated.

it still maintains genes that are conserved in all previously
sequenced plastomes, like genes for rRNA, some genes for
ribosomal proteins, tRNA (e.g, trnE and trnfM) and the es-
sential genes clpP and ycf2 (Wicke et al. 2013). Other parasitic
plants and even the protist Plasmodium, descendant of the
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same photosynthetic protist as plants, still show remnant
plastid genomes (McFadden et al. 1996, Maréchal and

Cesbron-Delauw 2001; Krause 2008; Li et al. 2013).

It is clearly challenging to prove the complete absence of a
plastid genome (Keeling 2010). Nevertheless, our inability to
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identify substantial plastid genome sequences from
R. lagascae using multiple approaches, despite success in iden-
tifying and developing a draft assembly of the much larger
mitochondrial genome, strongly suggests that there may be
no recognizable plastid genome in the parasitic plant R. lagas-
cae, or if present in cryptic form, is at very low levels.
Moreover, a similar result has also been observed for R. leo-
nardi (Nickrent DL, Molina J, Geisler M, Bamber AR, Pelser PB,
Barcelona JF, Inovejas SAB, Uy |, Purugganan MD, unpublished
data), which our study now reinforces with multiple lines of
evidence. These results together suggest that plastid genome
loss may be shared across multiple Rafflesia species, and this
putative loss is likely an evolutionary consequence of the very
ancient onset of parasitism in the family (Xi et al. 2013), per-
haps dating back to mid-Cretaceous (Molina J, unpublished
data).

It is possible for organelles to lose their genomes. This has
already been documented in some anaerobic ciliates, tricho-
monads, and fungi, which possess hydrogenosomes, ge-
nomeless organelles that produce molecular hydrogen and
are derived from mitochondria (Van der Giezen et al. 2005).
However, the loss of the plastome has not yet been demon-
strated in plants but deemed possible (Palmer 1997). Plastids
have been secondarily lost outside the flowering plant lineage,
including the protozoan trypanosomes (Martin and Borst
2003). However, in a recent study by Braukmann et al.
(2013) on some species of the parasitic flowering plant
Cuscuta (Convolvulaceae), difficulty has been reported in de-
tecting plastid rRNA (rrn) genes that are highly conserved
elements in plant plastomes even in heterotrophic species
(Krause 2011; Wicke et al. 2017; Li et al. 2013). Accordingly,
Braukmann et al’s (2013, p. 9) observations led them to con-
clude that some holoparasitic Cuscuta may have “reached the
same or similar evolutionary endpoint, where the very pres-
ence of a plastid genome is questionable.”

Despite the possible loss of the chloroplast and its genome,
there still remain plastid-like structures in Rafflesia. Images
from ultrastructural analysis from the congeneric R. philippen-
sis using transmission electron microscopy (TEM) demon-
strate that Rdfflesia (Nickrent DL, Molina J, Geisler M,
Bamber AR, Pelser PB, Barcelona JF, Inovejas SAB, Uy |,
Purugganan MD, unpublished data; for additional images,
see fig. 5) does contain plastid-like compartments with ho-
mogeneous stroma (Renzaglia K, personal communication).
None of these structures have the distinctive lamellar/endo-
membrane system found in all types of plastids. These suggest
that Rafflesia retains plastid compartments for certain meta-
bolic functions, even in the apparent absence of a plastid
genome.

There are two possible scenarios for the evolution of these
genome-less plastids. One is that any relevant genes still nec-
essary for metabolic function have relocated to the nucleus
and/or mitochondria. Another possibility is that these
Rafflesia plastids were originally obtained from the host,
with subsequent translocation of host-encoded plastid
genes to the nucleus and eventually degenerating as
pseudogenes. The latter possibility may explain the large pro-
portion of remnant nonfunctional plastid gene sequences in

R. lagascae that are phylogenetically allied with Vitis nuclear
sequences (table 1; supplementary data S2, Supplementary
Material online). Such host-derived plastids have been ob-
served in certain parasitic red algae (Goff and Coleman
1995) as well as in natural grafts of sexually incompatible
species of Nicotiana (Stegemann et al. 2012). These two pos-
sibilities are not mutually exclusive, and the precise genetic
basis for the maintenance of these Rafflesia plastid-like struc-
tures must await more detailed analysis of fully assembled
nuclear genomes.

Interestingly, osmiophilic plastoglobules or carotenoid
bodies, which are typical inclusions of chromoplasts in col-
ored flowers (Camara et al. 1995), were also not seen in the
Raffesia plastid-like structures, and thus, may not be the pri-
mary source of the bright red-orange coloration characteristic
of Rafflesia species. Instead, there were very large vacuoles
observable in Rafflesia ramenta filled with osmiophilic mate-
rial, which may be phenolic compounds or terpenoids that
also appear as electron-dense material in other TEM studies
of trichomes (Sacchetti et al. 1999; Wen-Zhe et al. 2002).
These plant terpenoids can serve as precursors for a diversity
of plant metabolites such as carotenoid and anthocyanin
pigments and volatiles responsible for flower color and
odor (Tanaka et al. 2008).

Several hypotheses have been proposed with respect to
what biochemical constraints on plastid genome size or its
complete loss might exist owing to the need to retain partic-
ular genes required for metabolism (Bungard 2004; Barbrook
et al. 2006). The essential tRNA hypothesis states that plastid-
encoded trnE is considered essential for heme biosynthesis
(a component of the mitochondrial P450 cytochromes) and
could not be easily replaced by a cytosolic tRNA. It may be
that Rafflesia continues to retain plastids for various meta-
bolic functions, but the genes that encode for these are found
in the nucleus or in the mitochondria as in the case of a trnE
sequence recovered in R. leonardi (Nickrent DL, Molina J,
Geisler M, Bamber AR, Pelser PB, Barcelona JF, Inovejas SAB,
Uy |, Purugganan MD, unpublished data). The fates of other
essential plastid genes, such as the clpP and ycf2 loci (Wicke
et al. 2013), are unknown, and must await detailed genomic
and biochemical studies on these parasitic plant species.

Vestiges of the Missing Plastid Genome

The small regions we could successfully identify in R. lagascae
as putative plastid sequences represent less than 10% of the
chloroplast genome of photosynthetic plants, and do not
have intact reading frames and so are likely nonfunctional.
These results would make Rafflesia arguably the plant with
the smallest amount of plastid “genome” sequence that has
been observed thus far (Krause 2008; Li et al. 2013). Given the
low sequencing read coverage for these gene fragments (<2 x
coverage), it is likely that these remnant plastid sequences are
located in the nuclear genome, similar to what has been
observed for nuclear-integrated chloroplast genes and/or nu-
clear plastid DNAs (NUPTs) observed in other plant species
(Blanchard and Schmidt 1995; Kleine et al. 2009).
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Fic. 5. Electron micrographs of cells from R. philippensis ramenta indicating plastid-like (P) structures (N, nucleus; m, mitochondria; V, vacuole). Scale
bars=1pm.

Phylogenetic analyses of the remnant plastid gene
fragments in Rafflesia show that many of these genes have
anomalous but strongly supported (>50% BS support) phy-
logenetic placements that suggest they are the products of
HGT. Most of these genes grouped phylogenetically with ho-
mologs in Vitis (which belongs to the same family as the host
species Tetrastigma), rather than either Ricinus or Hevea,
which together are more closely related to Rafflesia. There
is a possibility that these may be due to contamination of the
Rafflesia DNA, but control experiments using universal rbcl
barcoding primers suggest that this is unlikely. The anomalous
phylogenetic placement of remnant Rafflesia plastid se-
quences may also arise from a complex history of gene du-
plication and extinction, although we think that HGT is a
more parsimonious explanation.

Although these other possibilities cannot be completely
ruled out, we feel that our results suggest that ~33% of the
plastid loci we have identified in R. lagascae may have been
horizontally acquired, most likely from its host as a result of
parasitism. It has already been demonstrated in other para-
sitic plants that the plasmodesmatal continuity between host
and parasite allows for molecular movement, including that
of genetic material (Birschwilks et al. 2006; Roney et al. 2007;
Talianova and Janousek 2011). Rampant HGT between
Rafflesia and Tetrastigma involving several nuclear and mito-
chondrial genes has also been repeatedly shown (Xi et al.
2012, 2013). Individual phylogenies of chloroplast sequences
recovered from the confamilial Sapria have also exhibited a
closer relationship to Vitis than to Ricinus (Xi et al. 2013). A
complete genome sequence of the Rafflesia nuclear genome
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will be necessary in order to conclusively determine the fate of
the genes that would normally reside in the plastid as well as
examine the other molecular evolutionary consequences of
the obligate parasitic lifestyle of this enigmatic yet fascinating
plant genus.

Materials and Methods

lllumina Whole-Genome Sequencing

A flower bud of R lagascae was collected from Sitio
Kanapawan, Barangay Bolos Point, Gattaran Municipality,
Cagayan Province, Philippines in 2010 (collection number
Nickrent 5791).  All necessary collecting (Philippine
Department of Environment and Natural Resources
Gratuitous Permit 193, and subsequent renewals GP 202
and 217), transport, and export permits were obtained.

A sizeable Rafflesia bud, attached only at its base to its host,
Tetrastigma, was carefully dissected from the host plant.
Genomic DNA was extracted from a portion of the disk,
which is sufficiently distant from host tissue and enclosed
in layers of bracts. DNA extraction was performed following
Nickrent et al. (2004). Contamination of R. lagascae DNA by
Tetrastigma was tested using standard PCR amplification
with degenerate rbcl barcoding primers (Kress et al. 2009).
PCR amplification was positive in Tetrastigma but negative in
R. lagascae (as well as in R. leonardi). The extracted R. lagascae
DNA was submitted to Ambry Genetics (Aliso Viejo, CA) for
lllumina next-generation sequencing, using both a 100-bp
and a 3-kb insert size library on Illlumina HiSeq 2000.
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Sequencing reads are deposited with the NCBI Sequence Read
Archive (SRX434531).

Mitochondrial Genome Assembly and Analysis

lllumina sequencing reads from R. lagascae were assembled
using two approaches. In one approach, we used a combina-
tion of SOAPdenovo (Luo et al. 2012) and reference-assisted
mapping to assemble R. lagascae’s organellar genomes.
We first assembled the mitochondrial gene sequence of the
closely related species, R. cantleyi (Xi et al. 2013), whose
lllumina reads were previously published and available in
NCBI (accession SRR629613) and used this assembly of its
mitochondrial genome as reference bait sequence. We then
collected all the R. lagascae 100-bp PE reads that mapped
to the R. cantleyi mitochondrial genome and used these to
de novo assemble R. lagascae’s mitochondrial genome in
SOAPdenovo. To annotate its mitochondrial genome, we
used Mitofy (Alverson et al. 2010). Annotated ORFs with
their accompanying numbers are based on the NCBI
GenBank database. HGT of the mitochondrial genes was de-
tected using phylogenetic analyses in MEGA5 (Tamura et al.
2011). In another approach, we did a de novo assembly of the
R. lagascae sequence reads using CLC Genomics Workbench
(ver. 5.5.1) (CLC Bio, Aarhus, Denmark).

Plastid Sequence Identification and Analysis

To identify sequence contigs comprising the plastid genome,
we employed multiple approaches. First, sequence contigs
from R. lagascae identified by the CLC Genomics
Workbench were mapped using Geneious R6 (Biomatters
Ltd, Auckland, New Zealand). These contigs were first
mapped to the full mitochondrial genomes of V. vinifera
(GenBank accession number FM179380) and Ri. communis
(HQ874649) to eliminate mitochondrial sequences, and all
unmapped reads were then collected and mapped to the
chloroplast genomes of Vitis (DQ424856.1) and Ricinus
(JF937588.1). Ricinus communis, like R. lagascae, is in the
Malpighiales, and is the closest species to Rafflesia for which
mitochondrial genome sequences are available. Vitis vinifera is
the closest species to Tetrastigma for which both mitochon-
drial and chloroplast genome sequences are also available.
Second, we conducted a BlastN search (e-value < e ') of
all the conserved plastid genes found in angiosperms available
from GenBank against the CLC-assembled sequence contigs.
We also generated profile HMM (Henderson et al. 1997) from
alignments of conserved plastid genes using HMMER (http://
hmmerjanelia.org/, last accessed February 8, 2014), which de-
velops probabilistic models (profile HMMs) and can detect
more remote similarities in sequence searches. We then
mapped all these plastid sequence contigs identified
(Geneious, BlastN, HMM) to the chloroplast genome of an-
other species in the Malpighiales, Hevea brasiliensis (GenBank
accession number NC_015308), using Geneious R6
(Biomatters, Ltd.). In a third approach, we mapped the 100-
bp PE reads using BWA (Burrows—Wheeler alignment) (Li and
Durbin 2010) and SAMtools (Sequence Alignment/Map) (Li
et al. 2009) to angiosperm plastid sequences from GenBank,

and then the resulting mapped reads were de novo assembled
using SOAPdenovo (Luo et al. 2012).

Putative plastid sequences identified earlier were then
aligned with homologous regions from other taxa whose
chloroplast genomes are available in GenBank using default
parameters in the Multiple Alignment using Fast Fourier
Transform (MAFFT) program (Katoh and Toh 2008) and vi-
sually checked (supplementary data S1, Supplementary
Material online). The alignments were analyzed phylogeneti-
cally in MEGAS (Tamura et al. 2011) using maximum likeli-
hood with 100 bootstrap replicates and applying the best
substitution model with the lowest Bayesian information cri-
terion scores (supplementary data S2, Supplementary
Material online).

To determine whether any of these putative plastid se-
quences are expressed, we also mapped the reads from the
R. cantleyi transcriptome library (accession SRA052224) (Xi
et al. 2012) using Bowtie 1.0.0 (Langmead et al. 2009),
TopHat2 (Kim et al. 2013), and Cufflinks (Trapnell et al.
2010) to the resulting contigs.

Comparative Levels of Mitochondrial and Plastid
Genomes in Algal and Flowering Plant Species

To compare our results in Rafflesia with the relative levels of
mitochondrial and chloroplast genome DNA in various spe-
cies, we used whole genome resequencing data from three
monocot species (Phoenix dactylifera, O. sativa, and O. glaber-
rima), one eudicot species (A. thaliana), and one photosyn-
thetic algae (Chlamydomonas reinhardtii). DNA from these
species was isolated from single-cell cultures (for C. reinhard-
tii), leaf or shoot tissue (P. dactylifera, O. sativa, O. glaberrima,
and A. thaliana), or nonphotosynthetic root tissue (O. glaber-
rima and A. thaliana). Libraries were constructed with 100-bp
insert sizes using lllumina Standard DNA Library or Nextera
kits (lllumina, San Diego, CA) and were sequenced as either
50-bp or 100-bp PE reads using lllumina Hiseq 2000 at NYU
Center for Genomics and Systems Biology in New York or
Abu Dhabi to obtain between 50 and 250 million reads per
sample. For all these sequences, we mapped the reads using
BWA (Li and Durbin 2010) and SAMtools (Sequence
Alignment/Map) (Li et al. 2009), with the species genome
sequence available in GenBank as a reference sequence.

Supplementary Material

Supplementary data S1 and S2, figure S1, and table S1 are
available at Molecular Biology and Evolution online (http://
www.mbe.oxfordjournals.org/).

Acknowledgments

The sequencing data have been deposited in the NCBI
Sequence Read Archive (accession number SRX434531).
The authors are grateful to Mary Ann Cajano, Salud
Pangan, Filipinas Natividad, Karen Renzaglia, Steve Rounsley,
Joseph Morin, Sandra Yap, Neda Barghi, Steven Sullivan, Jane
Carlton, Arturo Lluisma, and Cynthia Saloma for their help
and support in various aspects of the project. The authors are
also grateful for the help provided by the Department of

801


. 
Genbank
Horizontal gene transfer (
)
[
]
. 
itis
b
cinus
BLASTN
-
Genbank
hidden Markov models (
,
http://hmmer.janelia.org/
http://hmmer.janelia.org/
Blastn
Genbank
-
]
]
Genbank
above 
Genbank
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu051/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu051/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu051/-/DC1
 (BIC)
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu051/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu051/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu051/-/DC1
if 
[
]
. 
to 
-
3 
ryza
ryza
rabidopsis
ere
-
paired-end
-
 (Burrows-Wheeler Alignment)
[
]
]
Genbank
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu051/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu051/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu051/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu051/-/DC1
http://www.mbe.oxfordjournals.org/
http://www.mbe.oxfordjournals.org/

Molina et al. - doi:10.1093/molbev/msu051

MBE

Environment and Natural Resources-Protected Areas and
Wildlife Bureau (DENR-PAWB) of the Philippines, and
thank Director Theresa Mundita S. Lim, Josefina de Leon,
and Cecile Garcia for facilitating issuance of collecting permits.
For assistance in collecting R. lagascae, they thank Jovencio
Payba, Provincial Environment and Natural Resources Office
(PENRO)/DENR-Region 2, Apolinario U. Unarce, Sumper
Aresta, Tabuc, Rolando Echanique and Alfredo Gabriel and
The Cagayan Valley Partners in People Development
(CAVAPPED) through its President/CEOQ Perla A. Visorro.
For assistance in collecting R. philippensis (Mt. Banahaw),
the authors thank Jerry R. Mendua, Ananias M. Cahilo Sr.,
Romeo R. Diala, Angeles Coronado, Salud Pangan, and
MaryAnn O. Cajano. This work was supported by a start-up
grant from LIU and a Visiting Professorship grant from the
University of the Philippines to .M, and grants from the US
National Science Foundation Plant Genome Research
Program (I0S 1126971) and the NYU Abu Dhabi Institute
to M.D.P. This article is dedicated to the memory of Leonard
Co, a leading Philippine botanist and Rafflesia investigator,
who passed away while conducting fieldwork.

References

Alverson AJ, Wei X, Rice DW, Stern DB, Barry K, Palmer JD. 2010. Insights
into the evolution of mitochondrial genome size from complete
sequences of  Citrullus  lanatus and  Cucurbita  pepo
(Cucurbitaceae). Mol Biol Evol. 27:1436-1448.

Barbrook AC, Howe CJ, Purton S. 2006. Why are plastid genomes re-
tained in non-photosynthetic organisms? Trends Plant Sci. 11:
101-108.

Barcelona JF, Pelser PB, Balete DS, Co LL. 2009. Taxonomy, ecology, and
conservation status of Philippine Rafflesia (Rafflesiaceae). Blumea 54:
77-93.

Barkman T), Mcneal JR, Lim SH, Coat G, Croom HB, Young ND,
dePamphilis CW. 2007. Mitochondrial DNA suggests at least 11
origins of parasitism in angiosperms and reveals genomic chimerism
in parasitic plants. BMC Evol Biol. 7:248.

Birschwilks M, Haupt S, Hofius D, Neumann S. 2006. Transfer of phloem-
mobile substances from the host plants to the holoparasite
Cuscuta sp. | Exp Bot. 57:911-921.

Blanchard JL, Schmidt GW. 1995. Pervasive migration of organellar DNA
to the nucleus in plants. ] Mol Evol. 41:397-406.

Bock R. 2007. Structure, function, and inheritance of plastid genomes. In:
Bock R, editor. Cell and molecular biology of plastids: topics in
current genetics. Berlin: Springer. p. 29-63.

Braukmann T, Kuzmina M, Stefanovic S. 2013. Plastid genome evolution
across the genus Cuscuta (Convolvulaceae): two clades within sub-
genus Grammica exhibit extensive gene loss. | Exp Bot. 64:977-989.

Braukmann T, Stefanovic S. 2012. Plastid genome evolution in mycohe-
terotrophic Ericaceae. Plant Mol Biol. 79:5-20.

Bromham L, Cowman PF, Lanfear R. 2013. Parasitic plants have increased
rates of molecular evolution across all three genomes. BMC Evol Biol.
13:126.

Bungard RA. 2004. Photosynthetic evolution in parasitic plants: insight
from the chloroplast genome. BioEssays 26:235-247.

Camara B, Hugueney P, Bouvier F, Kuntz M, Moneger R. 1995.
Biochemistry and molecular biology of chromoplast development.
Int Rev Cytol. 163:175-247.

Colwell AE. 1994. Genome evolution in a nonphotosynthetic plant,
Conopholis americana [PhD dissertation]. [St Louis (WA)]:
Washington University.

Davis CC, Latvis M, Nickrent DL, Wurdack KJ, Baum DA. 2007. Floral
gigantism in Rafflesiaceae. Science 315:1812.

Davis C, Wurdack K. 2004. Host to parasite transfer in flowering plants:
phylogenetic evidence from Malpighiales. Science 305:676-678.

802

Goff L), Coleman AW. 1995. Fate of parasite and host organelle DNA
during cellular transformation of red algae by their parasites. Plant
Cell 7:1899-1911.

Gould SB, Waller RF, McFadden Gl. 2008. Plastid evolution. Annu Rev
Plant Biol. 59:491-517.

Henderson J, Salzberg S, Fasman KH. 1997. Finding genes in DNA with a
hidden Markov model. ] Comput Biol. 4:127-141.

Isono K, Niwa Y, Satoh K, Kobayashi H. 1997. Evidence for transcriptional
regulation of plastid photosynthesis genes in Arabidopsis thaliana
roots. Plant Physiol. 114:623-630.

Katoh K, Toh H. 2008. Recent developments in the MAFFT multiple
sequence alignment program. Brief Bioinform. 9:286-298.

Keeling P). 2010. The endosymbiotic origin, diversification and fate of
plastids. Philos Trans R Soc Lond B Biol Sci. 365:729-748.

Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. 2013.
TopHat2: accurate alignment of transcriptomes in the presence of
insertions, deletions and gene fusions. Genome Biol. 14:R36.

Kleine T, Maier UG, Leister D. 2009. DNA transfer from organelles to the
nucleus: the idiosyncratic genetics of endosymbiosis. Annu Rev Plant
Biol. 60:115-138.

Krause K. 2008. From chloroplasts to “cryptic” plastids: evolution of
plastid genomes in parasitic plants. Curr Genet. 54:111-121.

Krause K. 2011. Piecing together the puzzle of parasitic plant plastome
evolution. Planta 234:647—-656.

Kress WJ, Erickson DL, Jones AF, Swenson NG, Perez R, Sanjur O,
Bermingham E. 2009. Plant DNA barcodes and a community phy-
logeny of a tropical forest dynamics plot in Panama. Proc Natl Acad
Sci U S A. 106:18621-18626.

Langmead B, Trapnell C, Pop M, Salzberg SL. 2009. Ultrafast and
memory-efficient alignment of short DNA sequences to the
human genome. Genome Biol. 10:R25.

Li H, Durbin R. 2010. Fast and accurate long-read alignment with
Burrows-Wheeler transform. Bioinformatics 26:589-595.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G,
Abecasis G, Durbin R, 1000 Genome Project Data Processing
Subgroup. 2009. The sequence alignment/map (SAM) format and
SAMtools. Bioinformatics 25:22078—2079.

Li X, Zhang TC, Qiao Q, Ren Z, Zhao ), Yonezawa T, Hasegawa M,
Crabbe M), Li J, Zhong Y. 2013. Complete chloroplast ge-
nome sequence of holoparasite  Cistanche  deserticola
(Orobanchaceae) reveals gene loss and horizontal gene transfer
from its host Haloxylon ammodendron (Chenopodiaceae). PLoS
One 8:58747.

Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y,
et al. 2012. SOAPdenovo2: an empirically improved memory-
efficient short-read de novo assembler. GigaScience 1:18.

Maréchal E, Cesbron-Delauw MF. 2001. The apicoplast: a new member
of the plastid family. Trends Plant Sci. 6200-205.

Martin W. 2003. Gene transfer from organelles to the nucleus: frequent
and in big chunks. Proc Natl Acad Sci U S A. 100:8612-8614.

Martin W, Borst P. 2003. Secondary loss of chloroplast in trypanosomes.
Proc Natl Acad Sci U S A. 100:765-767.

McFadden G, Reith ME, Munholland J, Lang-Unnasch N. 1996. Plastid in
human parasites. Nature 381:482.

Nais J. 2001. Rafflesia of the world. Borneo (Kota Kinabalu): Natural
History Publications.

Neuhaus HE, Emes MJ. 2000. Nonphotosynthetic metabolism in plastids.
Annu Rev Plant Physiol Plant Mol Biol. 51:111-140.

Nickrent DL, Blarer A, Qiu Y-L, Vidal-Russell R, Anderson FE. 2004.
Phylogenetic inference in Rafflesiales: the influence of rate hetero-
geneity and horizontal gene transfer. BMC Evol Biol. 4:e40.

Nickrent DL, Duff J, Ouyang Y, dePamphilis CW. 1997. Do holoparasitic
Santalales possess a plastid genome? Plant Mol Biol. 34:717-729.

Palmer JD. 1997. The mitochondrion that time forgot. Nature 387
454—455.

Pelser PB, Nickrent DL, Callado JRC, Barcelona JF. 2013. Mt. Banahaw
reveals: the resurrection and neotypification of the name R. lagascae
(Rafflesiaceae) and clues to the dispersal of Rafflesia seeds. Phytotaxa
131:35-40.



Possible Loss of the Chloroplast Genome -

doi:10.1093/molbev/msu051

MBE

Rivarola M, Foster JT, Chan AP, Williams AL, Rice DW, Liu X, Melake-
Berhan A, Creasy HH, Puiu D, Rosovitz M), et al. 2011. Castor bean
organelle genome sequencing and worldwide genetic diversity ana-
lysis. PLoS ONE 6:¢21743.

Roney J, Khatibi P, Westwood J. 2007. Cross-species translocation of
mRNA from host plants into the parasitic plant dodder. Plant
Physiol. 143:1037-1043.

Sacchetti G, Romagnoli C, Nicoletti M, Di Fabio A, Bruni A, Poli F. 1999.
Glandular trichomes of Calceolaria adscendens Lidl. (Scrophularia-
ceae): histochemistry, development and ultrastructure. Ann Bot. 83:
87-92.

Stegemann S, Keuthe M, Greiner S, Bock R. 2012. Horizontal transfer of
chloroplast genomes between plant species. Proc Natl Acad Sci
U S A. 109:2434-2438.

Talianova M, Janousek B. 2011. What can we learn from tobacco and
other Solanaceae about horizontal DNA transfer? Am | Bot. 98:
1231-1242.

Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011.
MEGAS: molecular evolutionary genetics analysis using maximum
likelihood, evolutionary distance, and maximum parsimony meth-
ods. Mol Biol Evol. 28:2731-2739.

Tanaka Y, Sasaki N, Ohmiya A. 2008. Biosynthesis of plant pigments:
anthocyanins, betalains and carotenoids. Plant J. 54:733—749.

Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren M),
Salzberg SL, Wold BJ, Pachter L. 2010. Transcript assembly and quan-
tification by RNA-Seq reveals unannotated transcripts and isoform
switching during cell differentiation. Nat Biotechnol. 28:511-515.

Van der Giezen M, Tovar ), Clark CG. 2005. Mitochondrion-derived
organelles in protists and fungi. Int Rev Cytol. 244:175-225.

Wen-Zhe L, Hong-Fei LB, Zheng-Hai H. 2002. Ultrastructure of the
multicellular nodules in Hypericum perforatum leaves. Acta Bot
Sin. 44:649-656.

Westwood JH, Yoder JI, Timko MP, dePamphilis CW. 2010. The evolu-
tion of parasitism in plants. Trends Plant Sci. 15:227-235.

Wicke S, Schneeweiss GM, dePamphilis CW, Miiller KF, Quandt D. 2011.
The evolution of the plastid chromosome in land plants: gene con-
tent, gene order, gene function. Plant Mol Biol. 76:273-297.

Wicke S, Mller KF, dePamphilis CW, Quandt D, Wickett NJ, Zhang Y,
Renner SS, Schneeweiss GM. 2013. Mechanisms of functional and
physical genome reduction in photosynthetic and nonphotosyn-
thetic parasitic plants of the broomrape family. Plant Cell 25:
3711-3725.

Wise RR. 2006. The diversity of plastid form and function. In: Wise RR,
Hoober JK, editors. The structure and function of plastids. Vol. 23.
Dordrecht (The Netherlands): Springer. p. 3-26.

Wolfe KH, Morden CW, Palmer JD. 1992. Function and evolution of a
minimal plastid genome from a nonphotosynthetic parasitic plant.
Proc Natl Acad Sci U S A. 89:10648—10652.

Xi Z, Bradley RK, Wurdack K], Wong K, Sugumaran M, Bomblies K, Davis
CC. 2012. Horizontal transfer of expressed genes in a parasitic
flowering plant. BMC Genomics 13:227.

Xi Z, Wang Y, Bradley RK, Sugumaran M, Marx CJ, Rest JS, Davis CC.
2013. Massive mitochondrial gene transfer in a parasitic flowering
plant clade. PLoS Genet. 9:1003265.

803



